Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generalised agent for solving higher board states of tic tac toe using Reinforcement Learning (2212.12252v1)

Published 23 Dec 2022 in cs.AI

Abstract: Tic Tac Toe is amongst the most well-known games. It has already been shown that it is a biased game, giving more chances to win for the first player leaving only a draw or a loss as possibilities for the opponent, assuming both the players play optimally. Thus on average majority of the games played result in a draw. The majority of the latest research on how to solve a tic tac toe board state employs strategies such as Genetic Algorithms, Neural Networks, Co-Evolution, and Evolutionary Programming. But these approaches deal with a trivial board state of 3X3 and very little research has been done for a generalized algorithm to solve 4X4,5X5,6X6 and many higher states. Even though an algorithm exists which is Min-Max but it takes a lot of time in coming up with an ideal move due to its recursive nature of implementation. A Sample has been created on this link \url{https://bk-tic-tac-toe.herokuapp.com/} to prove this fact. This is the main problem that this study is aimed at solving i.e providing a generalized algorithm(Approximate method, Learning-Based) for higher board states of tic tac toe to make precise moves in a short period. Also, the code changes needed to accommodate higher board states will be nominal. The idea is to pose the tic tac toe game as a well-posed learning problem. The study and its results are promising, giving a high win to draw ratio with each epoch of training. This study could also be encouraging for other researchers to apply the same algorithm to other similar board games like Minesweeper, Chess, and GO for finding efficient strategies and comparing the results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)