Papers
Topics
Authors
Recent
Search
2000 character limit reached

Domain Decomposition Methods for Elliptic Problems with High Contrast Coefficients Revisited

Published 23 Dec 2022 in math.NA and cs.NA | (2212.12216v1)

Abstract: In this paper, we revisit the nonoverlapping domain decomposition methods for solving elliptic problems with high contrast coefficients. Some interesting results are discovered. We find that the Dirichlet-Neumann algorithm and Robin-Robin algorithms may make full use of the ratio of coefficients. Actually, in the case of two subdomains, we show that their convergence rates are $O(\epsilon)$, if $\nu_1\ll\nu_2$, where $\epsilon = \nu_1/\nu_2$ and $\nu_1,\nu_2$ are coefficients of two subdomains. Moreover, in the case of many subdomains, the condition number bounds of Dirichlet-Neumann algorithm and Robin-Robin algorithm are $1+\epsilon(1+\log(H/h))2$ and $C+\epsilon(1+\log(H/h))2$, respectively, where $\epsilon$ may be a very small number in the high contrast coefficients case. Besides, the convergence behaviours of the Neumann-Neumann algorithm and Dirichlet-Dirichlet algorithm may be independent of coefficients while they could not benefit from the discontinuous coefficients. Numerical experiments are preformed to confirm our theoretical findings.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.