Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Domain Decomposition Methods for Elliptic Problems with High Contrast Coefficients Revisited (2212.12216v1)

Published 23 Dec 2022 in math.NA and cs.NA

Abstract: In this paper, we revisit the nonoverlapping domain decomposition methods for solving elliptic problems with high contrast coefficients. Some interesting results are discovered. We find that the Dirichlet-Neumann algorithm and Robin-Robin algorithms may make full use of the ratio of coefficients. Actually, in the case of two subdomains, we show that their convergence rates are $O(\epsilon)$, if $\nu_1\ll\nu_2$, where $\epsilon = \nu_1/\nu_2$ and $\nu_1,\nu_2$ are coefficients of two subdomains. Moreover, in the case of many subdomains, the condition number bounds of Dirichlet-Neumann algorithm and Robin-Robin algorithm are $1+\epsilon(1+\log(H/h))2$ and $C+\epsilon(1+\log(H/h))2$, respectively, where $\epsilon$ may be a very small number in the high contrast coefficients case. Besides, the convergence behaviours of the Neumann-Neumann algorithm and Dirichlet-Dirichlet algorithm may be independent of coefficients while they could not benefit from the discontinuous coefficients. Numerical experiments are preformed to confirm our theoretical findings.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)