Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

When are Lemons Purple? The Concept Association Bias of Vision-Language Models (2212.12043v2)

Published 22 Dec 2022 in cs.CV, cs.CL, and cs.LG

Abstract: Large-scale vision-LLMs such as CLIP have shown impressive performance on zero-shot image classification and image-to-text retrieval. However, such performance does not realize in tasks that require a finer-grained correspondence between vision and language, such as Visual Question Answering (VQA). As a potential cause of the difficulty of applying these models to VQA and similar tasks, we report an interesting phenomenon of vision-LLMs, which we call the Concept Association Bias (CAB). We find that models with CAB tend to treat input as a bag of concepts and attempt to fill in the other missing concept crossmodally, leading to an unexpected zero-shot prediction. We demonstrate CAB by showing that CLIP's zero-shot classification performance greatly suffers when there is a strong concept association between an object (e.g. eggplant) and an attribute (e.g. color purple). We also show that the strength of CAB predicts the performance on VQA. We observe that CAB is prevalent in vision-LLMs trained with contrastive losses, even when autoregressive losses are jointly employed. However, a model that solely relies on autoregressive loss seems to exhibit minimal or no signs of CAB.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube