Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bayesian Physics-Informed Neural Networks for Robust System Identification of Power Systems (2212.11911v1)

Published 22 Dec 2022 in eess.SY and cs.SY

Abstract: This paper introduces for the first time, to the best of our knowledge, the Bayesian Physics-Informed Neural Networks for applications in power systems. Bayesian Physics-Informed Neural Networks (BPINNs) combine the advantages of Physics-Informed Neural Networks (PINNs), being robust to noise and missing data, with Bayesian modeling, delivering a confidence measure for their output. Such a confidence measure can be very valuable for the operation of safety critical systems, such as power systems, as it offers a degree of trustworthiness for the neural network output. This paper applies the BPINNs for robust identification of the system inertia and damping, using a single machine infinite bus system as the guiding example. The goal of this paper is to introduce the concept and explore the strengths and weaknesses of BPINNs compared to existing methods. We compare BPINNs with the PINNs and the recently popular method for system identification, SINDy. We find that BPINNs and PINNs are robust against all noise levels, delivering estimates of the system inertia and damping with significantly lower error compared to SINDy, especially as the noise levels increases.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.