Interaction-Aware Motion Planning for Autonomous Vehicles with Multi-Modal Obstacle Uncertainty Predictions (2212.11819v3)
Abstract: This paper proposes an interaction and safety-aware motion-planning method for an autonomous vehicle in uncertain multi-vehicle traffic environments. The method integrates the ability of the interaction-aware interacting multiple model Kalman filter (IAIMM-KF) to predict interactive multi-modal maneuvers of surrounding vehicles, and the advantage of model predictive control (MPC) in planning an optimal trajectory in uncertain dynamic environments. The multi-modal prediction uncertainties, containing both the maneuver and trajectory uncertainties of surrounding vehicles, are considered in computing the reference targets and designing the collision-avoidance constraints of MPC for resilient motion planning of the ego vehicle. The MPC achieves safety awareness by incorporating a tunable parameter to adjust the predicted obstacle occupancy in the design of the safety constraints, allowing the approach to achieve a trade-off between performance and robustness. Based on the prediction of the surrounding vehicles, an optimal reference trajectory of the ego vehicle is computed by MPC to follow the time-varying reference targets and avoid collisions with obstacles. The efficiency of the method is illustrated in challenging highway-driving simulation scenarios and a driving scenario from a recorded traffic dataset.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.