Papers
Topics
Authors
Recent
2000 character limit reached

Fast Exploration of the Impact of Precision Reduction on Spiking Neural Networks (2212.11782v1)

Published 22 Nov 2022 in cs.NE

Abstract: Approximate Computing (AxC) techniques trade off the computation accuracy for performance, energy, and area reduction gains. The trade-off is particularly convenient when the applications are intrinsically tolerant to some accuracy loss, as in the Spiking Neural Networks (SNNs) case. SNNs are a practical choice when the target hardware reaches the edge of computing, but this requires some area minimization strategies. In this work, we employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error to detect when the approximation exceeds tolerable limits by the application. Experimental results confirm the capability of reducing the exploration time significantly, providing the chance to reduce the network parameters' size further and with more fine-grained results.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.