Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Timestamp-Supervised Action Segmentation from the Perspective of Clustering (2212.11694v2)

Published 22 Dec 2022 in cs.CV

Abstract: Video action segmentation under timestamp supervision has recently received much attention due to lower annotation costs. Most existing methods generate pseudo-labels for all frames in each video to train the segmentation model. However, these methods suffer from incorrect pseudo-labels, especially for the semantically unclear frames in the transition region between two consecutive actions, which we call ambiguous intervals. To address this issue, we propose a novel framework from the perspective of clustering, which includes the following two parts. First, pseudo-label ensembling generates incomplete but high-quality pseudo-label sequences, where the frames in ambiguous intervals have no pseudo-labels. Second, iterative clustering iteratively propagates the pseudo-labels to the ambiguous intervals by clustering, and thus updates the pseudo-label sequences to train the model. We further introduce a clustering loss, which encourages the features of frames within the same action segment more compact. Extensive experiments show the effectiveness of our method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube