Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Maximising Influence Spread in Complex Networks by Utilising Community-based Driver Nodes as Seeds (2212.11611v1)

Published 22 Dec 2022 in cs.SI

Abstract: Finding a small subset of influential nodes to maximise influence spread in a complex network is an active area of research. Different methods have been proposed in the past to identify a set of seed nodes that can help achieve a faster spread of influence in the network. This paper combines driver node selection methods from the field of network control, with the divide-and-conquer approach of using community structure to guide the selection of candidate seed nodes from the driver nodes of the communities. The use of driver nodes in communities as seed nodes is a comparatively new idea. We identify communities of synthetic (i.e., Random, Small-World and Scale-Free) networks as well as twenty-two real-world social networks. Driver nodes from those communities are then ranked according to a range of common centrality measures. We compare the influence spreading power of these seed sets to the results of selecting driver nodes at a global level. We show that in both synthetic and real networks, exploiting community structure enhances the power of the resulting seed sets.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.