Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning-based Optimal Admission Control in a Single Server Queuing System (2212.11316v2)

Published 21 Dec 2022 in math.OC and stat.ML

Abstract: We consider a long-term average profit maximizing admission control problem in an M/M/1 queuing system with unknown service and arrival rates. With a fixed reward collected upon service completion and a cost per unit of time enforced on customers waiting in the queue, a dispatcher decides upon arrivals whether to admit the arriving customer or not based on the full history of observations of the queue-length of the system. (Naor 1969, Econometrica) showed that if all the parameters of the model are known, then it is optimal to use a static threshold policy -- admit if the queue-length is less than a predetermined threshold and otherwise not. We propose a learning-based dispatching algorithm and characterize its regret with respect to optimal dispatch policies for the full information model of Naor (1969). We show that the algorithm achieves an $O(1)$ regret when all optimal thresholds with full information are non-zero, and achieves an $O(\ln{1+\epsilon}(N))$ regret for any specified $\epsilon>0$, in the case that an optimal threshold with full information is $0$ (i.e., an optimal policy is to reject all arrivals), where $N$ is the number of arrivals.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.