Papers
Topics
Authors
Recent
2000 character limit reached

Audio Denoising for Robust Audio Fingerprinting (2212.11277v1)

Published 21 Dec 2022 in cs.SD, cs.IR, and cs.LG

Abstract: Music discovery services let users identify songs from short mobile recordings. These solutions are often based on Audio Fingerprinting, and rely more specifically on the extraction of spectral peaks in order to be robust to a number of distortions. Few works have been done to study the robustness of these algorithms to background noise captured in real environments. In particular, AFP systems still struggle when the signal to noise ratio is low, i.e when the background noise is strong. In this project, we tackle this problematic with Deep Learning. We test a new hybrid strategy which consists of inserting a denoising DL model in front of a peak-based AFP algorithm. We simulate noisy music recordings using a realistic data augmentation pipeline, and train a DL model to denoise them. The denoising model limits the impact of background noise on the AFP system's extracted peaks, improving its robustness to noise. We further propose a novel loss function to adapt the DL model to the considered AFP system, increasing its precision in terms of retrieved spectral peaks. To the best of our knowledge, this hybrid strategy has not been tested before.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.