Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Free-Rider Games for Federated Learning with Selfish Clients in NextG Wireless Networks (2212.11194v1)

Published 21 Dec 2022 in cs.GT, cs.AI, cs.LG, cs.NI, cs.SY, and eess.SY

Abstract: This paper presents a game theoretic framework for participation and free-riding in federated learning (FL), and determines the Nash equilibrium strategies when FL is executed over wireless links. To support spectrum sensing for NextG communications, FL is used by clients, namely spectrum sensors with limited training datasets and computation resources, to train a wireless signal classifier while preserving privacy. In FL, a client may be free-riding, i.e., it does not participate in FL model updates, if the computation and transmission cost for FL participation is high, and receives the global model (learned by other clients) without incurring a cost. However, the free-riding behavior may potentially decrease the global accuracy due to lack of contribution to global model learning. This tradeoff leads to a non-cooperative game where each client aims to individually maximize its utility as the difference between the global model accuracy and the cost of FL participation. The Nash equilibrium strategies are derived for free-riding probabilities such that no client can unilaterally increase its utility given the strategies of its opponents remain the same. The free-riding probability increases with the FL participation cost and the number of clients, and a significant optimality gap exists in Nash equilibrium with respect to the joint optimization for all clients. The optimality gap increases with the number of clients and the maximum gap is evaluated as a function of the cost. These results quantify the impact of free-riding on the resilience of FL in NextG networks and indicate operational modes for FL participation.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)