Separating MAX 2-AND, MAX DI-CUT and MAX CUT (2212.11191v2)
Abstract: Assuming the Unique Games Conjecture (UGC), the best approximation ratio that can be obtained in polynomial time for the MAX CUT problem is $\alpha_{\text{CUT}}\simeq 0.87856$, obtained by the celebrated SDP-based approximation algorithm of Goemans and Williamson. The currently best approximation algorithm for MAX DI-CUT, i.e., the MAX CUT problem in directed graphs, achieves a ratio of about $0.87401$, leaving open the question whether MAX DI-CUT can be approximated as well as MAX CUT. We obtain a slightly improved algorithm for MAX DI-CUT and a new UGC-hardness result for it, showing that $0.87446\le \alpha_{\text{DI-CUT}}\le 0.87461$, where $\alpha_{\text{DI-CUT}}$ is the best approximation ratio that can be obtained in polynomial time for MAX DI-CUT under UGC. The new upper bound separates MAX DI-CUT from MAX CUT, resolving a question raised by Feige and Goemans. A natural generalization of MAX DI-CUT is the MAX 2-AND problem in which each constraint is of the form $z_1\land z_2$, where $z_1$ and $z_2$ are literals, i.e., variables or their negations (In MAX DI-CUT each constraint is of the form $\bar{x}1\land x_2$, where $x_1$ and $x_2$ are variables.) Austrin separated MAX 2-AND from MAX CUT by showing that $\alpha{\text{2AND}} < 0.87435$ and conjectured that MAX 2-AND and MAX DI-CUT have the same approximation ratio. Our new lower bound on MAX DI-CUT refutes this conjecture, completing the separation of the three problems MAX 2-AND, MAX DI-CUT and MAX CUT. We also obtain a new lower bound for MAX 2-AND, showing that $0.87414\le \alpha_{\text{2AND}}\le 0.87435$. Our upper bound on MAX DI-CUT is achieved via a simple, analytical proof. The lower bounds on MAX DI-CUT and MAX 2-AND (the new approximation algorithms) use experimentally-discovered distributions of rounding functions which are then verified via computer-assisted proofs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.