Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 209 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Separating MAX 2-AND, MAX DI-CUT and MAX CUT (2212.11191v2)

Published 21 Dec 2022 in cs.CC, cs.DS, cs.NA, and math.NA

Abstract: Assuming the Unique Games Conjecture (UGC), the best approximation ratio that can be obtained in polynomial time for the MAX CUT problem is $\alpha_{\text{CUT}}\simeq 0.87856$, obtained by the celebrated SDP-based approximation algorithm of Goemans and Williamson. The currently best approximation algorithm for MAX DI-CUT, i.e., the MAX CUT problem in directed graphs, achieves a ratio of about $0.87401$, leaving open the question whether MAX DI-CUT can be approximated as well as MAX CUT. We obtain a slightly improved algorithm for MAX DI-CUT and a new UGC-hardness result for it, showing that $0.87446\le \alpha_{\text{DI-CUT}}\le 0.87461$, where $\alpha_{\text{DI-CUT}}$ is the best approximation ratio that can be obtained in polynomial time for MAX DI-CUT under UGC. The new upper bound separates MAX DI-CUT from MAX CUT, resolving a question raised by Feige and Goemans. A natural generalization of MAX DI-CUT is the MAX 2-AND problem in which each constraint is of the form $z_1\land z_2$, where $z_1$ and $z_2$ are literals, i.e., variables or their negations (In MAX DI-CUT each constraint is of the form $\bar{x}1\land x_2$, where $x_1$ and $x_2$ are variables.) Austrin separated MAX 2-AND from MAX CUT by showing that $\alpha{\text{2AND}} < 0.87435$ and conjectured that MAX 2-AND and MAX DI-CUT have the same approximation ratio. Our new lower bound on MAX DI-CUT refutes this conjecture, completing the separation of the three problems MAX 2-AND, MAX DI-CUT and MAX CUT. We also obtain a new lower bound for MAX 2-AND, showing that $0.87414\le \alpha_{\text{2AND}}\le 0.87435$. Our upper bound on MAX DI-CUT is achieved via a simple, analytical proof. The lower bounds on MAX DI-CUT and MAX 2-AND (the new approximation algorithms) use experimentally-discovered distributions of rounding functions which are then verified via computer-assisted proofs.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.