Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Faster Accelerated First-order Methods for Convex Optimization with Strongly Convex Function Constraints (2212.11143v4)

Published 21 Dec 2022 in math.OC and cs.LG

Abstract: In this paper, we introduce faster accelerated primal-dual algorithms for minimizing a convex function subject to strongly convex function constraints. Prior to our work, the best complexity bound was $\mathcal{O}(1/{\varepsilon})$, regardless of the strong convexity of the constraint function. It is unclear whether the strong convexity assumption can enable even better convergence results. To address this issue, we have developed novel techniques to progressively estimate the strong convexity of the Lagrangian function. Our approach, for the first time, effectively leverages the constraint strong convexity, obtaining an improved complexity of $\mathcal{O}(1/\sqrt{\varepsilon})$. This rate matches the complexity lower bound for strongly-convex-concave saddle point optimization and is therefore order-optimal. We show the superior performance of our methods in sparsity-inducing constrained optimization, notably Google's personalized PageRank problem. Furthermore, we show that a restarted version of the proposed methods can effectively identify the optimal solution's sparsity pattern within a finite number of steps, a result that appears to have independent significance.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)