Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Toward Human Readable Prompt Tuning: Kubrick's The Shining is a good movie, and a good prompt too? (2212.10539v1)

Published 20 Dec 2022 in cs.CL

Abstract: LLMs can perform new tasks in a zero-shot fashion, given natural language prompts that specify the desired behavior. Such prompts are typically hand engineered, but can also be learned with gradient-based methods from labeled data. However, it is underexplored what factors make the prompts effective, especially when the prompts are natural language. In this paper, we investigate common attributes shared by effective prompts. We first propose a human readable prompt tuning method (F LUENT P ROMPT) based on Langevin dynamics that incorporates a fluency constraint to find a diverse distribution of effective and fluent prompts. Our analysis reveals that effective prompts are topically related to the task domain and calibrate the prior probability of label words. Based on these findings, we also propose a method for generating prompts using only unlabeled data, outperforming strong baselines by an average of 7.0% accuracy across three tasks.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.