Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ECoHeN: A Hypothesis Testing Framework for Extracting Communities from Heterogeneous Networks (2212.10513v1)

Published 20 Dec 2022 in cs.SI and stat.ME

Abstract: Community discovery is the general process of attaining assortative communities from a network: collections of nodes that are densely connected within yet sparsely connected to the rest of the network. While community discovery has been well studied, few such techniques exist for heterogeneous networks, which contain different types of nodes and possibly different connectivity patterns between the node types. In this paper, we introduce a framework called ECoHeN, which \textbf{e}xtracts \textbf{co}mmunities from a \textbf{he}terogeneous \textbf{n}etwork in a statistically meaningful way. Using a heterogeneous configuration model as a reference distribution, ECoHeN identifies communities that are significantly more densely connected than expected given the node types and connectivity of its membership. Specifically, the ECoHeN algorithm extracts communities one at a time through a dynamic set of iterative updating rules, is guaranteed to converge, and imposes no constraints on the type composition of extracted communities. To our knowledge this is the first discovery method that distinguishes and identifies both homogeneous and heterogeneous, possibly overlapping, community structure in a network. We demonstrate the performance of ECoHeN through simulation and in application to a political blogs network to identify collections of blogs which reference one another more than expected considering the ideology of its' members.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.