Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

PoissonMat: Remodeling Matrix Factorization using Poisson Distribution and Solving the Cold Start Problem without Input Data (2212.10460v1)

Published 6 Dec 2022 in cs.IR, cs.AI, and cs.LG

Abstract: Matrix Factorization is one of the most successful recommender system techniques over the past decade. However, the classic probabilistic theory framework for matrix factorization is modeled using normal distributions. To find better probabilistic models, algorithms such as RankMat, ZeroMat and DotMat have been invented in recent years. In this paper, we model the user rating behavior in recommender system as a Poisson process, and design an algorithm that relies on no input data to solve the recommendation problem and the cold start issue at the same time. We prove the superiority of our algorithm in comparison with matrix factorization, random placement, Zipf placement, ZeroMat, DotMat, etc.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)