Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dissecting Transformer Length Extrapolation via the Lens of Receptive Field Analysis (2212.10356v2)

Published 20 Dec 2022 in cs.CL

Abstract: Length extrapolation permits training a transformer LLM on short sequences that preserves perplexities when tested on substantially longer sequences. A relative positional embedding design, ALiBi, has had the widest usage to date. We dissect ALiBi via the lens of receptive field analysis empowered by a novel cumulative normalized gradient tool. The concept of receptive field further allows us to modify the vanilla Sinusoidal positional embedding to create ~\textbf{Sandwich}, the first parameter-free relative positional embedding design that truly length information uses longer than the training sequence. Sandwich shares with KERPLE and T5 the same logarithmic decaying temporal bias pattern with learnable relative positional embeddings; these elucidate future extrapolatable positional embedding design.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.