Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 30 tok/s
Gemini 3.0 Pro 42 tok/s
Gemini 2.5 Flash 130 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Optimizing Serially Concatenated Neural Codes with Classical Decoders (2212.10355v3)

Published 20 Dec 2022 in cs.IT, cs.LG, and math.IT

Abstract: For improving short-length codes, we demonstrate that classic decoders can also be used with real-valued, neural encoders, i.e., deep-learning based codeword sequence generators. Here, the classical decoder can be a valuable tool to gain insights into these neural codes and shed light on weaknesses. Specifically, the turbo-autoencoder is a recently developed channel coding scheme where both encoder and decoder are replaced by neural networks. We first show that the limited receptive field of convolutional neural network (CNN)-based codes enables the application of the BCJR algorithm to optimally decode them with feasible computational complexity. These maximum a posteriori (MAP) component decoders then are used to form classical (iterative) turbo decoders for parallel or serially concatenated CNN encoders, offering a close-to-maximum likelihood (ML) decoding of the learned codes. To the best of our knowledge, this is the first time that a classical decoding algorithm is applied to a non-trivial, real-valued neural code. Furthermore, as the BCJR algorithm is fully differentiable, it is possible to train, or fine-tune, the neural encoder in an end-to-end fashion.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.