Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Strong uniform convergence of Laplacians of random geometric and directed kNN graphs on compact manifolds (2212.10287v1)

Published 20 Dec 2022 in math.PR and stat.ML

Abstract: Consider $n$ points independently sampled from a density $p$ of class $\mathcal{C}2$ on a smooth compact $d$-dimensional sub-manifold $\mathcal{M}$ of $\mathbb{R}m$, and consider the generator of a random walk visiting these points according to a transition kernel $K$. We study the almost sure uniform convergence of this operator to the diffusive Laplace-Beltrami operator when $n$ tends to infinity. This work extends known results of the past 15 years. In particular, our result does not require the kernel $K$ to be continuous, which covers the cases of walks exploring $k$NN-random and geometric graphs, and convergence rates are given. The distance between the random walk generator and the limiting operator is separated into several terms: a statistical term, related to the law of large numbers, is treated with concentration tools and an approximation term that we control with tools from differential geometry. The convergence of $k$NN Laplacians is detailed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.