Papers
Topics
Authors
Recent
2000 character limit reached

Hybrid Rule-Neural Coreference Resolution System based on Actor-Critic Learning (2212.10087v1)

Published 20 Dec 2022 in cs.CL

Abstract: A coreference resolution system is to cluster all mentions that refer to the same entity in a given context. All coreference resolution systems need to tackle two main tasks: one task is to detect all of the potential mentions, and the other is to learn the linking of an antecedent for each possible mention. In this paper, we propose a hybrid rule-neural coreference resolution system based on actor-critic learning, such that it can achieve better coreference performance by leveraging the advantages from both the heuristic rules and a neural conference model. This end-to-end system can also perform both mention detection and resolution by leveraging a joint training algorithm. We experiment on the BERT model to generate input span representations. Our model with the BERT span representation achieves the state-of-the-art performance among the models on the CoNLL-2012 Shared Task English Test Set.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.