Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Support Vector Regression: Risk Quadrangle Framework (2212.09178v6)

Published 18 Dec 2022 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: This paper investigates Support Vector Regression (SVR) within the framework of the Risk Quadrangle (RQ) theory. Every RQ includes four stochastic functionals -- error, regret, risk, and \emph{deviation}, bound together by a so-called statistic. The RQ framework unifies stochastic optimization, risk management, and statistical estimation. Within this framework, both $\varepsilon$-SVR and $\nu$-SVR are shown to reduce to the minimization of the \emph{Vapnik error} and the Conditional Value-at-Risk (CVaR) norm, respectively. The Vapnik error and CVaR norm define quadrangles with a statistic equal to the average of two symmetric quantiles. Therefore, RQ theory implies that $\varepsilon$-SVR and $\nu$-SVR are asymptotically unbiased estimators of the average of two symmetric conditional quantiles. Moreover, the equivalence between $\varepsilon$-SVR and $\nu$-SVR is demonstrated in a general stochastic setting. Additionally, SVR is formulated as a deviation minimization problem. Another implication of the RQ theory is the formulation of $\nu$-SVR as a Distributionally Robust Regression (DRR) problem. Finally, an alternative dual formulation of SVR within the RQ framework is derived. Theoretical results are validated with a case study.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.