Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Disentangling Learnable and Memorizable Data via Contrastive Learning for Semantic Communications (2212.09071v1)

Published 18 Dec 2022 in cs.LG, cs.IT, cs.NI, and math.IT

Abstract: Achieving artificially intelligent-native wireless networks is necessary for the operation of future 6G applications such as the metaverse. Nonetheless, current communication schemes are, at heart, a mere reconstruction process that lacks reasoning. One key solution that enables evolving wireless communication to a human-like conversation is semantic communications. In this paper, a novel machine reasoning framework is proposed to pre-process and disentangle source data so as to make it semantic-ready. In particular, a novel contrastive learning framework is proposed, whereby instance and cluster discrimination are performed on the data. These two tasks enable increasing the cohesiveness between data points mapping to semantically similar content elements and disentangling data points of semantically different content elements. Subsequently, the semantic deep clusters formed are ranked according to their level of confidence. Deep semantic clusters of highest confidence are considered learnable, semantic-rich data, i.e., data that can be used to build a language in a semantic communications system. The least confident ones are considered, random, semantic-poor, and memorizable data that must be transmitted classically. Our simulation results showcase the superiority of our contrastive learning approach in terms of semantic impact and minimalism. In fact, the length of the semantic representation achieved is minimized by 57.22% compared to vanilla semantic communication systems, thus achieving minimalist semantic representations.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube