Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Property of upper bounds on the number of rich words (2212.09066v1)

Published 18 Dec 2022 in math.CO and cs.DM

Abstract: A finite word $w$ is called \emph{rich} if it contains $\vert w\vert+1$ distinct palindromic factors including the empty word. Let $q\geq 2$ be the size of the alphabet. Let $R(n)$ be the number of rich words of length $n$. Let $d>1$ be a real constant and let $\phi, \psi$ be real functions such that \begin{itemize}\item there is $n_0$ such that $2\psi(2{-1}\phi(n))\geq d\psi(n)$ for all $n>n_0$, \item $\frac{n}{\phi(n)}$ is an upper bound on the palindromic length of rich words of length $n$, and \item $\frac{x}{\psi(x)}+\frac{x\ln{(\phi(x))}}{\phi(x)}$ is a strictly increasing concave function. \end{itemize} We show that if $c_1,c_2$ are real constants and $R(n)\leq q{c_1\frac{n}{\psi(n)}+c_2\frac{n\ln(\phi(n))}{\phi(n)}}$ then for every real constant $c_3>0$ there is a positive integer $n_0$ such that for all $n>n_0$ we have that [R(n)\leq q{(c_1+c_3)\frac{n}{d\psi(n)}+c_2\frac{n\ln(\phi(n))}{\phi(n)}(1+\frac{1}{c_2\ln{q}}+c_3)}\mbox{.}]

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.