Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AutoSlicer: Scalable Automated Data Slicing for ML Model Analysis (2212.09032v1)

Published 18 Dec 2022 in cs.LG and cs.DB

Abstract: Automated slicing aims to identify subsets of evaluation data where a trained model performs anomalously. This is an important problem for machine learning pipelines in production since it plays a key role in model debugging and comparison, as well as the diagnosis of fairness issues. Scalability has become a critical requirement for any automated slicing system due to the large search space of possible slices and the growing scale of data. We present Autoslicer, a scalable system that searches for problematic slices through distributed metric computation and hypothesis testing. We develop an efficient strategy that reduces the search space through pruning and prioritization. In the experiments, we show that our search strategy finds most of the anomalous slices by inspecting a small portion of the search space.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.