Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Low-Resource Authorship Style Transfer: Can Non-Famous Authors Be Imitated? (2212.08986v3)

Published 18 Dec 2022 in cs.CL

Abstract: Authorship style transfer involves altering text to match the style of a target author whilst preserving the original meaning. Existing unsupervised approaches like STRAP have largely focused on style transfer to target authors with many examples of their writing style in books, speeches, or other published works. This high-resource training data requirement (often greater than 100,000 words) makes these approaches primarily useful for style transfer to published authors, politicians, or other well-known figures and authorship styles, while style transfer to non-famous authors has not been well-studied. We introduce the low-resource authorship style transfer task, a more challenging class of authorship style transfer where only a limited amount of text in the target author's style may exist. In our experiments, we specifically choose source and target authors from Reddit and style transfer their Reddit posts, limiting ourselves to just 16 posts (on average ~500 words) of the target author's style. Style transfer accuracy is typically measured by how often a classifier or human judge will classify an output as written by the target author. Recent authorship representations models excel at authorship identification even with just a few writing samples, making automatic evaluation of this task possible for the first time through evaluation metrics we propose. Our results establish an in-context learning technique we develop as the strongest baseline, though we find current approaches do not yet achieve mastery of this challenging task. We release our data and implementations to encourage further investigation.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube