Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Point Cloud Pre-training with Knowledge Distillation from 2D Images (2212.08974v1)

Published 17 Dec 2022 in cs.CV

Abstract: The recent success of pre-trained 2D vision models is mostly attributable to learning from large-scale datasets. However, compared with 2D image datasets, the current pre-training data of 3D point cloud is limited. To overcome this limitation, we propose a knowledge distillation method for 3D point cloud pre-trained models to acquire knowledge directly from the 2D representation learning model, particularly the image encoder of CLIP, through concept alignment. Specifically, we introduce a cross-attention mechanism to extract concept features from 3D point cloud and compare them with the semantic information from 2D images. In this scheme, the point cloud pre-trained models learn directly from rich information contained in 2D teacher models. Extensive experiments demonstrate that the proposed knowledge distillation scheme achieves higher accuracy than the state-of-the-art 3D pre-training methods for synthetic and real-world datasets on downstream tasks, including object classification, object detection, semantic segmentation, and part segmentation.

Citations (8)

Summary

We haven't generated a summary for this paper yet.