Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Inductive Attention for Video Action Anticipation (2212.08830v2)

Published 17 Dec 2022 in cs.CV

Abstract: Anticipating future actions based on spatiotemporal observations is essential in video understanding and predictive computer vision. Moreover, a model capable of anticipating the future has important applications, it can benefit precautionary systems to react before an event occurs. However, unlike in the action recognition task, future information is inaccessible at observation time -- a model cannot directly map the video frames to the target action to solve the anticipation task. Instead, the temporal inference is required to associate the relevant evidence with possible future actions. Consequently, existing solutions based on the action recognition models are only suboptimal. Recently, researchers proposed extending the observation window to capture longer pre-action profiles from past moments and leveraging attention to retrieve the subtle evidence to improve the anticipation predictions. However, existing attention designs typically use frame inputs as the query which is suboptimal, as a video frame only weakly connects to the future action. To this end, we propose an inductive attention model, dubbed IAM, which leverages the current prediction priors as the query to infer future action and can efficiently process the long video content. Furthermore, our method considers the uncertainty of the future via the many-to-many association in the attention design. As a result, IAM consistently outperforms the state-of-the-art anticipation models on multiple large-scale egocentric video datasets while using significantly fewer model parameters.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.