Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Relational Sentence Embedding for Flexible Semantic Matching (2212.08802v2)

Published 17 Dec 2022 in cs.CL

Abstract: We present Relational Sentence Embedding (RSE), a new paradigm to further discover the potential of sentence embeddings. Prior work mainly models the similarity between sentences based on their embedding distance. Because of the complex semantic meanings conveyed, sentence pairs can have various relation types, including but not limited to entailment, paraphrasing, and question-answer. It poses challenges to existing embedding methods to capture such relational information. We handle the problem by learning associated relational embeddings. Specifically, a relation-wise translation operation is applied to the source sentence to infer the corresponding target sentence with a pre-trained Siamese-based encoder. The fine-grained relational similarity scores can be computed from learned embeddings. We benchmark our method on 19 datasets covering a wide range of tasks, including semantic textual similarity, transfer, and domain-specific tasks. Experimental results show that our method is effective and flexible in modeling sentence relations and outperforms a series of state-of-the-art sentence embedding methods. https://github.com/BinWang28/RSE

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com