Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Personalized Federated Recommender Systems with Private and Partially Federated AutoEncoders (2212.08779v1)

Published 17 Dec 2022 in cs.IR

Abstract: Recommender Systems (RSs) have become increasingly important in many application domains, such as digital marketing. Conventional RSs often need to collect users' data, centralize them on the server-side, and form a global model to generate reliable recommendations. However, they suffer from two critical limitations: the personalization problem that the RSs trained traditionally may not be customized for individual users, and the privacy problem that directly sharing user data is not encouraged. We propose Personalized Federated Recommender Systems (PersonalFR), which introduces a personalized autoencoder-based recommendation model with Federated Learning (FL) to address these challenges. PersonalFR guarantees that each user can learn a personal model from the local dataset and other participating users' data without sharing local data, data embeddings, or models. PersonalFR consists of three main components, including AutoEncoder-based RSs (ARSs) that learn the user-item interactions, Partially Federated Learning (PFL) that updates the encoder locally and aggregates the decoder on the server-side, and Partial Compression (PC) that only computes and transmits active model parameters. Extensive experiments on two real-world datasets demonstrate that PersonalFR can achieve private and personalized performance comparable to that trained by centralizing all users' data. Moreover, PersonalFR requires significantly less computation and communication overhead than standard FL baselines.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.