Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rarely a problem? Language models exhibit inverse scaling in their predictions following few-type quantifiers (2212.08700v2)

Published 16 Dec 2022 in cs.CL, cs.AI, and cs.LG

Abstract: How well do LLMs deal with quantification? In this study, we focus on 'few'-type quantifiers, as in 'few children like toys', which might pose a particular challenge for LLMs because the sentence components with out the quantifier are likely to co-occur, and 'few'-type quantifiers are rare. We present 960 English sentence stimuli from two human neurolinguistic experiments to 22 autoregressive transformer models of differing sizes. Not only do all the models perform poorly on 'few'-type quantifiers, but overall the larger the model, the worse its performance. This inverse scaling is consistent with previous work suggesting that larger models increasingly reflect online rather than offline human processing, and we argue that the decreasing performance of larger models may challenge uses of LLMs as the basis for natural language systems.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.