Papers
Topics
Authors
Recent
2000 character limit reached

Grothendieck inequalities characterize converses to the polynomial method (2212.08559v3)

Published 16 Dec 2022 in quant-ph and cs.CC

Abstract: A surprising 'converse to the polynomial method' of Aaronson et al. (CCC'16) shows that any bounded quadratic polynomial can be computed exactly in expectation by a 1-query algorithm up to a universal multiplicative factor related to the famous Grothendieck constant. Here we show that such a result does not generalize to quartic polynomials and 2-query algorithms, even when we allow for additive approximations. We also show that the additive approximation implied by their result is tight for bounded bilinear forms, which gives a new characterization of the Grothendieck constant in terms of 1-query quantum algorithms. Along the way we provide reformulations of the completely bounded norm of a form, and its dual norm.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.