Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Exponentially Stable Adaptive Observation for Systems Parameterized by Unknown Physical Parameters (2212.08405v2)

Published 16 Dec 2022 in eess.SY and cs.SY

Abstract: The method to design exponentially stable adaptive observers is proposed for linear time-invariant systems parameterized by unknown physical parameters. Unlike existing adaptive solutions, the system state-space matrices A, B are not restricted to be represented in the observer canonical form to implement the observer. The original system description is used instead, and, consequently, the original state vector is obtained. The class of systems for which the method is applicable is identified via three assumptions related to: (i) the boundedness of a control signal and all system trajectories, (ii) the identifiability of the physical parameters of A and B from the numerator and denominator polynomials of a system input/output transfer function and (iii) the complete observability of system states. In case they are met and the regressor is finitely exciting, the proposed adaptive observer, which is based on the known GPEBO and DREM procedures, ensures exponential convergence of both system parameters and states estimates to their true values. Detailed analysis for stability and convergence has been provided along with simulation results to validate the developed theory.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.