Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Exponentially Stable Adaptive Observation for Systems Parameterized by Unknown Physical Parameters (2212.08405v2)

Published 16 Dec 2022 in eess.SY and cs.SY

Abstract: The method to design exponentially stable adaptive observers is proposed for linear time-invariant systems parameterized by unknown physical parameters. Unlike existing adaptive solutions, the system state-space matrices A, B are not restricted to be represented in the observer canonical form to implement the observer. The original system description is used instead, and, consequently, the original state vector is obtained. The class of systems for which the method is applicable is identified via three assumptions related to: (i) the boundedness of a control signal and all system trajectories, (ii) the identifiability of the physical parameters of A and B from the numerator and denominator polynomials of a system input/output transfer function and (iii) the complete observability of system states. In case they are met and the regressor is finitely exciting, the proposed adaptive observer, which is based on the known GPEBO and DREM procedures, ensures exponential convergence of both system parameters and states estimates to their true values. Detailed analysis for stability and convergence has been provided along with simulation results to validate the developed theory.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.