Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Criticality of $\text{AC}^0$ formulae (2212.08397v3)

Published 16 Dec 2022 in cs.CC

Abstract: Rossman [In $\textit{Proc. $34$th Comput. Complexity Conf.}$, 2019] introduced the notion of $\textit{criticality}$. The criticality of a Boolean function $f : {0,1}n \to {0,1}$ is the minimum $\lambda \geq 1$ such that for all positive integers $t$, [ \Pr_{\rho \sim \mathcal{R}p}\left[\text{DT}{\text{depth}}(f|_{\rho}) \geq t\right] \leq (p\lambda)t. ] H\"astad's celebrated switching lemma shows that the criticality of any $k$-DNF is at most $O(k)$. Subsequent improvements to correlation bounds of $\text{AC}0$-circuits against parity showed that the criticality of any $\text{AC}0$-$\textit{circuit}$ of size $S$ and depth $d+1$ is at most $O(\log S)d$ and any $\textit{regular}$ $\text{AC}0$-$\textit{formula}$ of size $S$ and depth $d+1$ is at most $O\left(\frac1d \cdot \log S\right)d$. We strengthen these results by showing that the criticality of $\textit{any}$ $\text{AC}0$-formula (not necessarily regular) of size $S$ and depth $d+1$ is at most $O\left(\frac1d\cdot {\log S}\right)d$, resolving a conjecture due to Rossman. This result also implies Rossman's optimal lower bound on the size of any depth-$d$ $\text{AC}0$-formula computing parity [$\textit{Comput. Complexity, 27(2):209--223, 2018.}$]. Our result implies tight correlation bounds against parity, tight Fourier concentration results and improved $#$SAT algorithm for $\text{AC}0$-formulae.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Prahladh Harsha (41 papers)
  2. Tulasi mohan Molli (1 paper)
  3. Ashutosh Shankar (5 papers)

Summary

We haven't generated a summary for this paper yet.