Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Sparsity and Randomness for Data-driven Low Rank Approximation (2212.08186v1)

Published 15 Dec 2022 in cs.LG

Abstract: Learning-based low rank approximation algorithms can significantly improve the performance of randomized low rank approximation with sketch matrix. With the learned value and fixed non-zero positions for sketch matrices from learning-based algorithms, these matrices can reduce the test error of low rank approximation significantly. However, there is still no good method to learn non-zero positions as well as overcome the out-of-distribution performance loss. In this work, we introduce two new methods Learning Sparsity and Learning Randomness which try to learn a better sparsity patterns and add randomness to the value of sketch matrix. These two methods can be applied with any learning-based algorithms which use sketch matrix directly. Our experiments show that these two methods can improve the performance of previous learning-based algorithm for both test error and out-of-distribution test error without adding too much complexity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.