Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural Networks (2212.08020v1)

Published 23 Nov 2022 in cs.NI and cs.LG

Abstract: Cooperative beamforming design has been recognized as an effective approach in modern wireless networks to meet the dramatically increasing demand of various wireless data traffics. It is formulated as an optimization problem in conventional approaches and solved iteratively in an instance-by-instance manner. Recently, learning-based methods have emerged with real-time implementation by approximating the mapping function from the problem instances to the corresponding solutions. Among various neural network architectures, graph neural networks (GNNs) can effectively utilize the graph topology in wireless networks to achieve better generalization ability on unseen problem sizes. However, the current GNNs are only equipped with the node-update mechanism, which restricts it from modeling more complicated problems such as the cooperative beamforming design, where the beamformers are on the graph edges of wireless networks. To fill this gap, we propose an edge-graph-neural-network (Edge-GNN) by incorporating an edge-update mechanism into the GNN, which learns the cooperative beamforming on the graph edges. Simulation results show that the proposed Edge-GNN achieves higher sum rate with much shorter computation time than state-of-the-art approaches, and generalizes well to different numbers of base stations and user equipments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.