Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distributed-Training-and-Execution Multi-Agent Reinforcement Learning for Power Control in HetNet (2212.07967v1)

Published 15 Dec 2022 in eess.SY, cs.LG, cs.MA, and cs.SY

Abstract: In heterogeneous networks (HetNets), the overlap of small cells and the macro cell causes severe cross-tier interference. Although there exist some approaches to address this problem, they usually require global channel state information, which is hard to obtain in practice, and get the sub-optimal power allocation policy with high computational complexity. To overcome these limitations, we propose a multi-agent deep reinforcement learning (MADRL) based power control scheme for the HetNet, where each access point makes power control decisions independently based on local information. To promote cooperation among agents, we develop a penalty-based Q learning (PQL) algorithm for MADRL systems. By introducing regularization terms in the loss function, each agent tends to choose an experienced action with high reward when revisiting a state, and thus the policy updating speed slows down. In this way, an agent's policy can be learned by other agents more easily, resulting in a more efficient collaboration process. We then implement the proposed PQL in the considered HetNet and compare it with other distributed-training-and-execution (DTE) algorithms. Simulation results show that our proposed PQL can learn the desired power control policy from a dynamic environment where the locations of users change episodically and outperform existing DTE MADRL algorithms.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.