Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Scholarly Knowledge Extraction from Published Software Packages (2212.07921v1)

Published 15 Dec 2022 in cs.DL

Abstract: A plethora of scientific software packages are published in repositories, e.g., Zenodo and figshare. These software packages are crucial for the reproducibility of published research. As an additional route to scholarly knowledge graph construction, we propose an approach for automated extraction of machine actionable (structured) scholarly knowledge from published software packages by static analysis of their (meta)data and contents (in particular scripts in languages such as Python). The approach can be summarized as follows. First, we extract metadata information (software description, programming languages, related references) from software packages by leveraging the Software Metadata Extraction Framework (SOMEF) and the GitHub API. Second, we analyze the extracted metadata to find the research articles associated with the corresponding software repository. Third, for software contained in published packages, we create and analyze the Abstract Syntax Tree (AST) representation to extract information about the procedures performed on data. Fourth, we search the extracted information in the full text of related articles to constrain the extracted information to scholarly knowledge, i.e. information published in the scholarly literature. Finally, we publish the extracted machine actionable scholarly knowledge in the Open Research Knowledge Graph (ORKG).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.