Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Advancing Multilingual Pre-training: TRIP Triangular Document-level Pre-training for Multilingual Language Models (2212.07752v2)

Published 15 Dec 2022 in cs.CL

Abstract: Despite the success of multilingual sequence-to-sequence pre-training, most existing approaches rely on document-level monolingual corpora in many different languages, sentence-level bilingual corpora,\footnote{In this paper, we use bilingual corpora' to denote parallel corpora withbilingual translation pairs' in many different language pairs, each consisting of two sentences/documents with the same meaning written in different languages. We use trilingual corpora' to denote parallel corpora withtrilingual translation pairs' in many different language combinations, each consisting of three sentences/documents.} and sometimes synthetic document-level bilingual corpora. This hampers the performance with cross-lingual document-level tasks such as document-level translation. Therefore, we propose to mine and leverage document-level trilingual parallel corpora to improve sequence-to-sequence multilingual pre-training. We present \textbf{Tri}angular Document-level \textbf{P}re-training (\textbf{TRIP}), which is the first in the field to accelerate the conventional monolingual and bilingual objectives into a trilingual objective with a novel method called Grafting. Experiments show that TRIP achieves several strong state-of-the-art (SOTA) scores on three multilingual document-level machine translation benchmarks and one cross-lingual abstractive summarization benchmark, including consistent improvements by up to 3.11 d-BLEU points and 8.9 ROUGE-L points.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.