Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Gradient-based Intra-attention Pruning on Pre-trained Language Models (2212.07634v2)

Published 15 Dec 2022 in cs.CL

Abstract: Pre-trained LLMs achieve superior performance but are computationally expensive. Techniques such as pruning and knowledge distillation have been developed to reduce their sizes and latencies. In this work, we propose a structured pruning method GRAIN (Gradient-based Intra-attention pruning), which performs task-specific pruning with knowledge distillation and yields highly effective models. Different from common approaches that prune each attention head as a whole, GRAIN inspects and prunes intra-attention structures, which greatly expands the structure search space and enables more flexible models. We also propose a gradient separation strategy that reduces the interference of distillation on pruning for a better combination of the two approaches. Experiments on GLUE, SQuAD, and CoNLL 2003 show that GRAIN notably outperforms other methods, especially in the high sparsity regime, and achieves $6\sim7\times$ speedups while maintaining $93\%\sim99\%$ performance. Under extreme compression where only $3\%$ transformer weights remain, the pruned model is still competitive compared to larger models.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.