Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient-based Intra-attention Pruning on Pre-trained Language Models (2212.07634v2)

Published 15 Dec 2022 in cs.CL

Abstract: Pre-trained LLMs achieve superior performance but are computationally expensive. Techniques such as pruning and knowledge distillation have been developed to reduce their sizes and latencies. In this work, we propose a structured pruning method GRAIN (Gradient-based Intra-attention pruning), which performs task-specific pruning with knowledge distillation and yields highly effective models. Different from common approaches that prune each attention head as a whole, GRAIN inspects and prunes intra-attention structures, which greatly expands the structure search space and enables more flexible models. We also propose a gradient separation strategy that reduces the interference of distillation on pruning for a better combination of the two approaches. Experiments on GLUE, SQuAD, and CoNLL 2003 show that GRAIN notably outperforms other methods, especially in the high sparsity regime, and achieves $6\sim7\times$ speedups while maintaining $93\%\sim99\%$ performance. Under extreme compression where only $3\%$ transformer weights remain, the pruned model is still competitive compared to larger models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.