Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Triangulating Python Performance Issues with Scalene (2212.07597v1)

Published 15 Dec 2022 in cs.PL and cs.PF

Abstract: This paper proposes Scalene, a profiler specialized for Python. Scalene combines a suite of innovations to precisely and simultaneously profile CPU, memory, and GPU usage, all with low overhead. Scalene's CPU and memory profilers help Python programmers direct their optimization efforts by distinguishing between inefficient Python and efficient native execution time and memory usage. Scalene's memory profiler employs a novel sampling algorithm that lets it operate with low overhead yet high precision. It also incorporates a novel algorithm that automatically pinpoints memory leaks, whether within Python or across the Python-native boundary. Scalene tracks a new metric called copy volume, which highlights costly copying operations that can occur when Python silently converts between C and Python data representations, or between CPU and GPU. Since its introduction, Scalene has been widely adopted, with over 500,000 downloads to date. We present experience reports from developers who used Scalene to achieve significant performance improvements and memory savings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Emery D. Berger (22 papers)
  2. Sam Stern (1 paper)
  3. Juan Altmayer Pizzorno (4 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.