Multi-Scale Feature Fusion Transformer Network for End-to-End Single Channel Speech Separation (2212.07163v1)
Abstract: Recently studies on time-domain audio separation networks (TasNets) have made a great stride in speech separation. One of the most representative TasNets is a network with a dual-path segmentation approach. However, the original model called DPRNN used a fixed feature dimension and unchanged segment size throughout all layers of the network. In this paper, we propose a multi-scale feature fusion transformer network (MSFFT-Net) based on the conventional dual-path structure for single-channel speech separation. Unlike the conventional dual-path structure where only one processing path exists, adopting several iterative blocks with alternative intra-chunk and inter-chunk operations to capture local and global context information, the proposed MSFFT-Net has multiple parallel processing paths where the feature information can be exchanged between multiple parallel processing paths. Experiments show that our proposed networks based on multi-scale feature fusion structure have achieved better results than the original dual-path model on the benchmark dataset-WSJ0-2mix, where the SI-SNRi score of MSFFT-3P is 20.7dB (1.47% improvement), and MSFFT-2P is 21.0dB (3.45% improvement), which achieves SOTA on WSJ0-2mix without any data augmentation method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.