Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

In-Season Crop Progress in Unsurveyed Regions using Networks Trained on Synthetic Data (2212.06896v1)

Published 13 Dec 2022 in cs.LG and cs.CV

Abstract: Many commodity crops have growth stages during which they are particularly vulnerable to stress-induced yield loss. In-season crop progress information is useful for quantifying crop risk, and satellite remote sensing (RS) can be used to track progress at regional scales. At present, all existing RS-based crop progress estimation (CPE) methods which target crop-specific stages rely on ground truth data for training/calibration. This reliance on ground survey data confines CPE methods to surveyed regions, limiting their utility. In this study, a new method is developed for conducting RS-based in-season CPE in unsurveyed regions by combining data from surveyed regions with synthetic crop progress data generated for an unsurveyed region. Corn-growing zones in Argentina were used as surrogate 'unsurveyed' regions. Existing weather generation, crop growth, and optical radiative transfer models were linked to produce synthetic weather, crop progress, and canopy reflectance data. A neural network (NN) method based upon bi-directional Long Short-Term Memory was trained separately on surveyed data, synthetic data, and two different combinations of surveyed and synthetic data. A stopping criterion was developed which uses the weighted divergence of surveyed and synthetic data validation loss. Net F1 scores across all crop progress stages increased by 8.7% when trained on a combination of surveyed region and synthetic data, and overall performance was only 21% lower than when the NN was trained on surveyed data and applied in the US Midwest. Performance gain from synthetic data was greatest in zones with dual planting windows, while the inclusion of surveyed region data from the US Midwest helped mitigate NN sensitivity to noise in NDVI data. Overall results suggest in-season CPE in other unsurveyed regions may be possible with increased quantity and variety of synthetic crop progress data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube