Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Plug-and-Play image reconstruction is a convergent regularization method (2212.06881v2)

Published 13 Dec 2022 in math.NA and cs.NA

Abstract: Non-uniqueness and instability are characteristic features of image reconstruction processes. As a result, it is necessary to develop regularization methods that can be used to compute reliable approximate solutions. A regularization method provides of a family of stable reconstructions that converge to an exact solution of the noise-free problem as the noise level tends to zero. The standard regularization technique is defined by variational image reconstruction, which minimizes a data discrepancy augmented by a regularizer. The actual numerical implementation makes use of iterative methods, often involving proximal mappings of the regularizer. In recent years, Plug-and-Play image reconstruction (PnP) has been developed as a new powerful generalization of variational methods based on replacing proximal mappings by more general image denoisers. While PnP iterations yield excellent results, neither stability nor convergence in the sense of regularization has been studied so far. In this work, we extend the idea of PnP by considering families of PnP iterations, each being accompanied by its own denoiser. As our main theoretical result, we show that such PnP reconstructions lead to stable and convergent regularization methods. This shows for the first time that PnP is mathematically equally justified for robust image reconstruction as variational methods

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.