Papers
Topics
Authors
Recent
2000 character limit reached

Truly Bayesian Entropy Estimation (2212.06705v3)

Published 13 Dec 2022 in stat.ME, cs.IT, and math.IT

Abstract: Estimating the entropy rate of discrete time series is a challenging problem with important applications in numerous areas including neuroscience, genomics, image processing and natural language processing. A number of approaches have been developed for this task, typically based either on universal data compression algorithms, or on statistical estimators of the underlying process distribution. In this work, we propose a fully-Bayesian approach for entropy estimation. Building on the recently introduced Bayesian Context Trees (BCT) framework for modelling discrete time series as variable-memory Markov chains, we show that it is possible to sample directly from the induced posterior on the entropy rate. This can be used to estimate the entire posterior distribution, providing much richer information than point estimates. We develop theoretical results for the posterior distribution of the entropy rate, including proofs of consistency and asymptotic normality. The practical utility of the method is illustrated on both simulated and real-world data, where it is found to outperform state-of-the-art alternatives.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.