Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Validation of Neural Network Controllers for Uncertain Systems Through Keep-Close Approach: Robustness Analysis and Safety Verification (2212.06532v3)

Published 13 Dec 2022 in eess.SY, cs.SY, and math.DS

Abstract: Among the major challenges in neural control system technology is the validation and certification of the safety and robustness of neural network (NN) controllers against various uncertainties including unmodelled dynamics, nonlinearities, and time delays. One way in providing such validation guarantees is to maintain the closed-loop system output with a NN controller when its input changes within a bounded set, close to the output of a robustly performing closed-loop reference model. This paper presents a novel approach to analysing the performance and robustness of uncertain feedback systems with NN controllers. Due to the complexity of analysing such systems, the problem is reformulated as the problem of dynamical tracking errors between the closed-loop system with a neural controller and an ideal closed-loop reference model. Then, the approximation of the controller error is characterised by adopting the differential mean value theorem (DMV) and the Integral Quadratic Constraints (IQCs) technique. Moreover, the Relative Integral Square Error (RISE) and the Supreme Square Error (SSE) bounded set are derived for the output of the error dynamical system. The analysis is then performed by integrating Lyapunov theory with the IQCs-based technique. The resulting worst-case analysis provides the user a prior knowledge about the worst case of RISE and SSE between the reference closed-loop model and the uncertain system controlled by the neural controller.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.