SMT Sampling via Model-Guided Approximation (2212.06472v1)
Abstract: We investigate the domain of satisfiable formulas in satisfiability modulo theories (SMT), in particular, automatic generation of a multitude of satisfying assignments to such formulas. Despite the long and successful history of SMT in model checking and formal verification, this aspect is relatively under-explored. Prior work exists for generating such assignments, or samples, for Boolean formulas and for quantifier-free first-order formulas involving bit-vectors, arrays, and uninterpreted functions (QF_AUFBV). We propose a new approach that is suitable for a theory T of integer arithmetic and to T with arrays and uninterpreted functions. The approach involves reducing the general sampling problem to a simpler instance of sampling from a set of independent intervals, which can be done efficiently. Such reduction is carried out by expanding a single model - a seed - using top-down propagation of constraints along the original first-order formula.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.