Policy learning for many outcomes of interest: Combining optimal policy trees with multi-objective Bayesian optimisation (2212.06312v2)
Abstract: Methods for learning optimal policies use causal machine learning models to create human-interpretable rules for making choices around the allocation of different policy interventions. However, in realistic policy-making contexts, decision-makers often care about trade-offs between outcomes, not just single-mindedly maximising utility for one outcome. This paper proposes an approach termed Multi-Objective Policy Learning (MOPoL) which combines optimal decision trees for policy learning with a multi-objective Bayesian optimisation approach to explore the trade-off between multiple outcomes. It does this by building a Pareto frontier of non-dominated models for different hyperparameter settings which govern outcome weighting. The key here is that a low-cost greedy tree can be an accurate proxy for the very computationally costly optimal tree for the purposes of making decisions which means models can be repeatedly fit to learn a Pareto frontier. The method is applied to a real-world case-study of non-price rationing of anti-malarial medication in Kenya.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.