Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Parameter-Efficient Finetuning of Transformers for Source Code (2212.05901v1)

Published 12 Dec 2022 in cs.CL, cs.LG, and cs.SE

Abstract: Pretrained Transformers achieve state-of-the-art performance in various code-processing tasks but may be too large to be deployed. As software development tools often incorporate modules for various purposes which may potentially use a single instance of the pretrained model, it appears relevant to utilize parameter-efficient fine-tuning for the pretrained models of code. In this work, we test two widely used approaches, adapters and LoRA, which were initially tested on NLP tasks, on four code-processing tasks. We find that though the efficient fine-tuning approaches may achieve comparable or higher performance than the standard, full, fine-tuning in code understanding tasks, they underperform full fine-tuning in code-generative tasks. These results underline the importance of testing efficient fine-tuning approaches on other domains than NLP and motivate future research in efficient fine-tuning for source code.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.