Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

BigText-QA: Question Answering over a Large-Scale Hybrid Knowledge Graph (2212.05798v2)

Published 12 Dec 2022 in cs.CL and cs.AI

Abstract: Answering complex questions over textual resources remains a challenge, particularly when dealing with nuanced relationships between multiple entities expressed within natural-language sentences. To this end, curated knowledge bases (KBs) like YAGO, DBpedia, Freebase, and Wikidata have been widely used and gained great acceptance for question-answering (QA) applications in the past decade. While these KBs offer a structured knowledge representation, they lack the contextual diversity found in natural-language sources. To address this limitation, BigText-QA introduces an integrated QA approach, which is able to answer questions based on a more redundant form of a knowledge graph (KG) that organizes both structured and unstructured (i.e., "hybrid") knowledge in a unified graphical representation. Thereby, BigText-QA is able to combine the best of both worlds$\unicode{x2013}$a canonical set of named entities, mapped to a structured background KB (such as YAGO or Wikidata), as well as an open set of textual clauses providing highly diversified relational paraphrases with rich context information. Our experimental results demonstrate that BigText-QA outperforms DrQA, a neural-network-based QA system, and achieves competitive results to QUEST, a graph-based unsupervised QA system.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.