Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Integrated optimization of train timetables rescheduling and response vehicles on a disrupted metro line (2212.05715v1)

Published 12 Dec 2022 in eess.SY and cs.SY

Abstract: When an unexpected metro disruption occurs, metro managers need to reschedule timetables to avoid trains going into the disruption area, and transport passengers stranded at disruption stations as quickly as possible. This paper proposes a two-stage optimization model to jointly make decisions for two tasks. In the first stage, the timetable rescheduling problem with cancellation and short-turning strategies is formulated as a mixed integer linear programming (MILP). In particular, the instantaneous parameters and variables are used to describe the accumulation of time-varying passenger flow. In the second one, a system-optimal dynamic traffic assignment (SODTA) model is employed to dynamically schedule response vehicles, which is able to capture the dynamic traffic and congestion. Numerical cases of Beijing Metro Line 9 verify the efficiency and effectiveness of our proposed model, and results show that: (1) when occurring a disruption event during peak hours, the impact on the normal timetable is greater, and passengers in the direction with fewer train services are more affected; (2) if passengers stranded at the terminal stations of disruption area are not transported in time, they will rapidly increase at a speed of more than 300 passengers per minute; (3) compared with the fixed shortest path, using the response vehicles reduces the total travel time about 7%. However, it results in increased travel time for some passengers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube